
Navigating detailed worlds with a
complex, physically driven locomotion:

NPC Skateboarder AI in EA’s:

Mark Wesley
Senior Software Engineer

EA Black Box

What is skate?

•  It’s a skateboarding game…

•  A brand new franchise from EA Black
Box, launched in September 2007 on
Xbox 360 and PS3.

•  Lots of fun

So what about the AI?
The Game Design called for:

•  AI competitors in challenges (Races /
Best Trick Contests / etc.)

•  Ambient “Living World” AI skaters for
atmosphere.

•  (Note: There are also AI controlled
pedestrians and vehicles, but that’s a separate
topic.)

So where’s the problem?

•  Detailed Collision Environment
•  Skaters are fully physics driven (i.e. we

can’t cheat)
•  Fully physics driven skateboarding is

quite a complex form of locomotion to
steer.

•  No ability to walk (until skate 2)
•  Dynamic world (vehicles, pedestrians,

other skaters, etc.)

Launch a trick incorrectly
(wrong place / direction / speed / time / …)

… then you’ll bail

Even curbs are hard…

Our Solution – AI Paths

•  Record people playing the game
– Records the “what and where”, not the

“how”.
•  Attach metadata to the path
•  Save out as an XML file
•  Process the paths into something

usable in game.

Path Recording

•  Store nodes at varying intervals whilst
skating.

•  Path Nodes consist primarily of:
– Position
– Velocity
– Orientation
– Width (calculated by terrain analysis)

Runtime Path Format

•  Node elements are stored compressed,
quantized and packed.

•  Path is interpolated from nodes.
– Position and velocity use a Hermite curve.
– Orientations use slerped quaternions.
– Nodes are stored whenever the

interpolated data would differ from the
original by more than a given threshold.

Recording A Path

Path Editor

•  All in game, allows designers to:

– View and select paths in the world
– Trim, tweak and delete paths
– Edit metadata (effectively allowing them to

script who can use the paths and when)
– Quickly iterate, test and debug.

Viewing A Path

Path Pre-Processing

•  Detects branches etc.

•  Available in-game for rapid WYSIWYG
iteration by designers

•  Also done offline to generate efficient
binary data for the rest of the team (and
the finished product)

Path Following

•  Any skater can optionally have an AI
Controller attached

•  Looks at the skater’s current path
•  Evaluates dynamic obstacles
•  Looks at branches and other paths
•  Tries to pick the best route
•  Drives the skater with controller intents

AI Profiles

•  Tunable by designers

•  Influence ability, tricks performed and
style of skating for each character

•  AI skaters dynamically swap tricks when
possible for variety.

It’s easy if there’s nothing in the way…

Dynamic Avoidance

•  Evaluate all dynamic obstacles around
the skater.

•  No static analysis of the world (all we
need is already in the path)

•  Cut obstacles out of the paths
•  Look for possible speeds that would

allow skater to pass in front or behind of
other moving entities

Dynamic Avoidance: Ex 1

Dynamic Avoidance: Ex 1

Dynamic Avoidance: Ex 2

Dynamic Avoidance: Ex 2

Dynamic Avoidance: Ex 3

Added Bonus - Skitching

A Skitchable Obstacle

Within Path, Correct Direction

So Skitch It…

And Steer As Necessary

Skitching – Exit

Paths Diverge

Detatch from Vehicle

Narrow Path, Wide Object…

If Short Enough…

Run / Jump Over It

If Completely Blocked…

Give up and bail…

Respawn Just Past It…

Quick Tangent…

•  All the above shots are from skate’s
replay editor.

•  All debug + diagnostics drawing goes
through our replay system.

•  Insanely helpful for debugging (for SEs
and designers)

Automated Testing

•  AI Controller could be attached to any
skater.

•  Therefore easy to make the game play
itself.

•  Useful for overnight soak tests etc.

Some Paths

Do we need many Paths?

•  Large Open World

•  Needed lots of good path data

•  Our QA department helped out by
generating a large amount of it for us.

Lots of Paths

Lots and Lots of Paths

Paths, paths, everywhere

Some Stats from skate

•  Note: 465 Km (290 Miles) is the is equivalent of
skating from Vancouver to Seattle and back,
followed by 11 runs down Mount Everest.

Total number of Paths 4,825
Total number of Nodes 250,747
Total number of Tricks 20,515
Total number of Branches 48,500
Total length of paths 465 Km

Total duration of paths 17.5 Hours

Total memory (if all paths were loaded simultaneously) 12.68 MB

Conclusion

Pros

•  It worked
•  Game Designers seem to like it
•  Allows some scripting “for free” by

simply constraining the paths used at a
particular point

•  A large path set combined with more
random path constraints gives a nice
emergent behavior

Review Praises AI?
 "Playing solo in the career mode won't leave you feeling lonely.
San Vanelona is somewhat of a haven for skaters; they flock
there... You'll be doing a challenge and someone might cut in
and skate your line. Or you'll be hunting for a new spot to skate
and have P-Rod ride past you. These appearances are
common, but not superficial. You can follow Rodriguez around
town, which may lead you to a sweet spot that you didn't know
about... (90%)”

 (IGN Review, 2007)

Cons

•  Skaters are constrained by the path
network

•  Requires a lot of data to be recorded

•  Paths are invalidated if the underlying
world moves.

Possible Extensions

Paths on Dynamic Objects

Paths on Dynamic Objects

Record the End User

•  Record paths constantly, upload,
process and share the data.

•  Easy to generate an AI profile from
already captured telemetry data.

•  Asynchronous Online – AI equivalents
of your friends appear around you!

Better use of NavMesh

•  There’s Navmesh in the world already
(for the pedestrians).

•  Didn’t use it for skaters in Skate 1 (you
couldn’t walk after all…)

•  Originally planned to use it as a fallback
in many cases in skate 2…

Smarter Path Usage

•  Background process to weight paths
based on object obstruction etc.

•  Thinking multiple steps ahead (we don’t
do any “path-finding”, because we’ve
never actually needed to).

Questions? Questions?

