
Implementing a Rewindable 
Instant Replay System for 
Temporal Debugging 

Mark Wesley 
Lead Gameplay Programmer – 2K Marin 



Talk contents: 

●  What is a “Rewindable Replay” system? 
●  How to implement one for debugging 
●  How to use it 
●  How to make it shippable 
●  Questions 



But first, a quick intro to me 

I’ve worked on a bunch of games 



Several of those included Replay 
of some form 

Mysterious 
Current 
Project 



Some as a feature in the final 
game. 

●  Burnout: 

●  Rewindable Crash Replays 
●  Deterministic Race Replays 

●  Skate Trilogy: 

●  Rewindable Video Replays 



Some as a non-shipping feature 
added purely to aid development. 

Mysterious 
Current 
Project 



What is Rewindable Replay 

●  It’s Rewindable… 
●  It is NOT determinstic Replay 

●  Requires no determinism, therefore: 
●  It is extremely robust 
●  It is far more useful 



What is Rewindable Replay 

●  Video-style replay 
●  As seen in many sports games 

●  Like a VCR/PVR attached to your game. 
●  BUT you can: 

●  Move the camera around 
●  Enable debug info 



If a picture paints a 1000 words… 

●  Then how about a video? 
●  Note: 

●  I cannot show our game at this time 
●  Ported code back to Unreal 3 in 1 hour 

●  http://youtu.be/x1rgEtC3bTc 



Sounds expensive to make? 

●  To make it shippable, yes 
●  But for a dev only version, no 

●  For internal use only 
●  Doesn’t have to be pretty 
●  Easier to find some spare memory 



Development time 

●  Basics can be done in 2 days 
●  Debug Draw and Persistent Entities 

●  A complete version in just 1-2 weeks 
●  Skeletal meshes, Temporary Entities 

●  Will pay for itself very quickly 



Implementation (Recording) 

●  Circular Buffer of frames 
●  (e.g. last 900 frames =30s @ 30fps) 

●  Store all debug draw 
●  In minimal form 

●  E.g. As a Sphere or AABB not as lots of lines 

●  Store data on relevant game entities 



Minimize Memory Usage 

●  Use compressed / compacted structures: 
●  Store 3D vectors as 3 floats (not SIMD Vec4s) 
●  Store orientations as compressed quaternions 
●  Store debug text in 8 bit (not wide) chars 
●  Store bools as bitfields / bitmasks 
●  Pack everything together 
●  A “Bit Stream” read/writer can be handy 



Storing Debug Draw 

●  Merge nearby 3D text into “paragraphs” 
●  Clamp max debug draw per frame 

●  But flag the frame as being overbudget 

●  Keep large static stuff out of replay 
●   E.g. Navmesh, Collision meshes, etc. 
●   Just draw them live 



Storing Entities 

●  For relevant entities: 
●  Need a fast way of iterating over these 
●  Store: 

●  A unique ID (e.g. { Ptr, SpawnTime }) 
●  3D Transform 
●  Bones for skeletal meshes (optional) 
●  Any other important display info (e.g “Damage”) 



Store Game Camera 

●  In-game camera transform 

●  Useful for debugging camera 

●  Shows game from user’s perspective 

●  Allow use of manual cam too 



Implementation (Playback) 

●  Pause the game simulation 
●  For the current frame: 

●  Render that frame’s debug draw 
●  Use the stored transforms for each entity 

●  Allow scrubbing / rewind / fast forward 



Implementation (Playback) 

●  Entities (re-use those in paused sim): 
●  Render using data from the replay 
●  For sub-frame blending: 

●  Find matching entity in neighboring replay frame 
●  Interpolate data as appropriate 

●  Slerp quaternions 
●  Lerp vectors 



Short Entity Lifetimes (1) 

●  Entity didn’t exist at 1st frame of replay? 
●  Was spawned during replay 
●  Exists at end (so in current simulation) 
●  If not stored in current frame - don’t draw it 



Short Entity Lifetimes (2) 

●  Entity unspawned before end of replay: 
●  There’s no entity to reuse… 

●  Show a debug draw representation 
●  Re-create entity (using the same mesh) 

●  Harder if you already unloaded the assets… 
●  Re-use a similar asset?  



Replay – what is it good for? 

●  Combine with good in-game diagnostics 
●  E.g. Lots of Debug Draw 

●  Temporal Debugging 
●  Anything that occurred in the past 
●  Understanding how things change over time 



Replay – what is it good for? 

●  Temporal Debugging examples: 
●  AI decision making, pathfinding, etc. 
●  Physics collisions / reactions 
●  Gameplay actions 
●  Animation 
●  Multiplayer replication 



Vs. Traditional debugging tools 

●  Visual Studio etc. 
●  Good for low-level debugging… 
●  Terrible for higher-level debugging 

●  Slow to get a bigger picture view 
●  Only show the “now” 
●  Very unfriendly for non-programmers 
●  Particularly poor with optimized code 



Vs. Traditional debugging tools 

●  Log Files / TTY 
●  Provide a partial history of what happened 
●  Hard to: 

●  Parse hundreds of pages of these 
●  Visualize game state in 3D 
●  Associate with in-game 



Gameplay debugging advice 

●  Use higher level tools / viewers! 
●  E.g. a Video Replay System. 



Debugging Example 

●  http://youtu.be/jUpTGeszM4o 



Memory usage 

●  Anything > 1MB can give a “useful” replay 
●  To find more memory: 

●  On PC you probably have plenty. 
●  On Consoles 

●  Use the extra devkit memory… 
●  Only store a small buffer, stream the rest to disk or 
over the network to your PC. 



If you’re still short of memory… 

●  Store less stuff… 
●  Compress / Quantize data 
●  Store only every N frames 

●  Can be variable, and on a per entity basis 
●  Does add a lot of complexity… 



Useful Extensions 

●  Debug draw “channels” 
●  E.g. AI, Physics, Animation 
●  Always stored, but only displayed as required 

●  Serialize entire entity 
●  Less reliant on debug draw 
●  Can allow for lower-level debugging too 



Useful Extensions Continued… 

●  Save / Load replays 
●  Attach to bug reports etc. 
●  Great for hard/slow to repro issues 

●  Export replays live to an external viewer 
●  Provide a better GUI outside of game 



If you wanted to ship it… 

●  Someone will always request this… 
●  It is quite a lot more work 

●  Replaying everything (particles + audio) 
●  Fitting in retail memory 
●  Robust manual camera (with collision) 
●  Nice GUI 



If you still wanted to ship it… 

●  Design it in from the start 
●  Use stateless parametric particle effects 
●  Plan for the memory overhead 
●  Plan for how you spawn / unspawn entities 
●  Plan for how you stream assets 
●  Plan for how you submit your render data 



Replaying Particles 

●  If you don’t have a parametric system… 
●  Fake it by: 

●  Storing start and end markers 
●  Playing effect forwards by abs(deltaTime) 

●  http://youtu.be/bzwdPoKP80k 



Any Questions? 

Slides and contact information available at: 

 www.markwesley.com 


